概日リズムの制御を基盤原理とした収穫後青果物の 品質変化メカニズム解明とその利用

岐阜大学 応用生物科学部 タンマウォン マナスィカン

1. 研究の背景と目的

原核生物を含むほとんどすべての生物には概日リズ ムと呼ばれる約24時間周期で変動する生理現象が観察 される¹⁾.植物において、外環境である昼夜や季節の変 化に適応しながら生きていくために概日リズムは必須 である²⁾. 哺乳動物では体温, 睡眠覚醒, ホルモンの分 泌,摂食など、高等植物では胚軸の伸長、葉の就眠運 動,気孔開閉,光合成などが知られている¹⁾.この概 日リズムを生み出す生命機構を概日時計と呼び³⁾,入力 系,中心振動体,出力系の3つのフレームワークに便宜 的に区分される⁴⁾.温度や光などの外部信号を受け取る と入力系によって中心振動体に伝達され、中心振動体か らの時間情報を基に出力系が決まった応答を誘導または 制御する.近年の分子生物学の発展によりこの概日時計 の実体は、時計遺伝子と呼ばれる遺伝子の複雑なネット ワークであることがわかってきた^{5,6)}.植物概日時計は、 CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) / LATE ELONGATED HYPOCOTYL (LHY) 遺伝子と TIMING OF CAB EXPRESSION 1 (TOC1) の 2 つ の遺伝子がネガティブフィードバックループにより約24 時間の周期を刻んでいる(Central loop)⁷⁾. これに加え. PSEUDO-RESPONSE REGULATOR (PRR), EARLY FLOWERIN (ELF), LUX ARRHYTHMO (LUX) の 発現によって, Morning loop, Evening loop の計3つ の発現フィードバックループ機構で、概日時計を形成して いる. 光入力系によって概日時計は, 光の強さに応じて葉 緑体を移動させる葉緑体光定位運動、花芽形成への生育段 階の切り替えなど多くの生理現象を制御している^{8,9}.

マイクロアレイを用いた網羅的な遺伝子発現解析によ り、光合成や細胞形成、二次代謝経路など、重要な遺伝子 の発現が概日時計により調節されていることが判明した^{3,10)}. 概日時計と外部信号の関係を利用したものに植物工場が挙 げられる.レタスの遺伝子発現リズムが植物工場では22 時間周期であることや光の波長分布によって概日時計の周 期そのものを調整できることも明らかになっており、これ らの成果を生かし、植物工場ではより効率的に生産する ための技術が開発されている¹¹⁾. また、長日植物である シロイヌナズナより単離された *GIGANTEA (GI)* 遺伝子 は、光周性花成制御や概日リズム制御に関わる重要な鍵因 子であることが明らかとなっていて、ポストハーベスト分 野では、収穫後ブロッコリーにおいて GI 変異体では野生 株と比較して黄化が抑制されたという報告がある¹².収 穫後葉菜類において 12 時間毎の明暗サイクルによって、 25 ℃貯蔵でも外観やクロロフィルが 10 ℃貯蔵と同等に 維持されるという研究報告がある¹³.このように概日リ ズムシステムを利用した研究報告はあるが、品質保持のメ カニズムや光照射による時計遺伝子発現の変動、またこれ らの関係については明らかになっていない.

アスコルビン酸は,光合成生物によって生成される水溶 性抗酸化物質として様々な代謝系に関与している.葉菜類 では収穫後に経時的に減少することが知られており,鮮度 評価の指標の一つになる¹⁴.しかし人間は体内でアスコ ルビン酸を生成できないため,食事から必要量を摂取する 必要がある.このようにアスコルビン酸は人間栄養学とし ても重要である.

貯蔵中の光照射による品質と概日リズムの変動,またそ れらの関係を明らかにすることによって,概日時計の制御 を原理とした革新的品質保持法の開発が期待できる.そこ で品質保持メカニズムの解明および関連の有無について検 討した.本研究ではホウレンソウを水耕栽培し,栽培温度 である21℃で12時間明期12時間暗期,24時間暗期の 二つの処理区で貯蔵した.このサンプルを用いて4時間 毎に時計遺伝子,光受容体遺伝子,アスコルビン酸関連遺 伝子について qRT-PCR を用いて測定を行い,発現解析 を行った.

2. 研究の方法

2-1. 供試材料

供試材料には、研究室で水耕栽培したホウレンソウ (ASP02K)を用いた.栽培環境と同じ21℃に設定した 室内で2日間貯蔵した.収穫前24時間から貯蔵終了ま でリズム解析のために4時間毎にサンプリングを実施し た.アスコルビン酸測定のためのサンプルは、同様に収穫 前24時間から貯蔵終了まで12時間毎に作製した.なお、 収穫時刻は、6:00 am とした.

2-2. アスコルビン酸含量測定

(1) サンプリング方法

展開した葉のうち,内側から第5葉から第7葉の下半 分を計2gになるよう使用した.アルミホイルで包み, 液体窒素で凍結させた後,-80℃(VT-208, NIHON FREEZER)で保管した.

(2) アスコルビン酸含量測定方法

アスコルビン酸含量測定は, Mazurek らの方法を参考 にし, 高速液体クロマトグラフィー法(HPLC法)によっ て行った¹⁵⁾.

測定には、UltiMate3000 (サーモフィッシャーサイエ ンティフィック)を使用した.カラムは、Hydrosphere C18 (株式会社ワイエムシティ、50 × 4.6 mm.D, 粒子 径 3 µm)を用いた.移動相は、pH 2.2 の 50 mM リン 酸緩衝液を用い、カラム温度は 35 ℃,流量は 1.0 mL/ min で測定した.

アスコルビン酸含量の算出では、標準液(0, 12.5, 25, 50, 100 μg/mL)のピーク面積で作成した検量線 を用いて算出した. アスコルビン酸含量は, mg/100 g 新鮮重で表した.

2-3. 遺伝子発現量測定

(1) サンプリング方法

展開した葉のうち,内側から第5葉から第7葉の上半 分を使用した.他の葉を傷つけないように葉をハサミで切 り取り,それぞれアルミホイルで包み,液体窒素で凍結さ せた後,分析するまで-80℃で保存した.

(2) RNA の抽出およびリアルタイム PCR による遺伝子発現解析

保存した試料を液体窒素と共に乳鉢・乳棒で粉末状 に磨砕し,抽出試料とした. RNeasy[®] Plus Mini Kit (QIAGEN)を用いて,付属のマニュアルに従い RNAを 抽出した.抽出した total RNA を鋳型とし,Primescript II 1st strand cDNA synthesis Kit (タカラバイオ株式 会社)を用いた逆転写反応によって cDNA を合成した. CFX ConnectTM Real-Time PCR System (Bio-Rad, USA) により,各サンプルのハウスキーピング遺伝子 So18S rRNA と標的遺伝子 (**表**1)の発現量を測定した. リアルタイム PCR 解析用のプライマー配列は表2に示し た.データ解析には,CFX ManagerTM software(Bio-Rad, USA)を用いた. Livak らの方法を参考に2^{-ΔΔ Ct}法を用 いて,収穫直後である24時間目を基準として遺伝子発現 量の相対値を算出した¹⁶.

2-4. データ解析

2.3 (2) より得られた相対遺伝子発現量を統計解析向 けプログラミング言語,およびその開発実行環境である R コマンダー(Windows 版, R4.1.2)を用いて,各遺伝 子間の偏相関係数および偏相関係数行列を求めた. 偏相関 係数とは,注目する変数以外の影響を取り除いた状態で2 つの変数の間の相関を表す.偏相関係数を用いることで本 来相関のないはずの変数が見かけ上相関があるように見え る疑似相関を排除し,真の相関を見ることができる.時計 遺伝子など複数の遺伝子が複雑に絡み合うため,偏相関行 列を求め遺伝子発現が品質保持に及ぼす影響の考察に用い た.

表1. 本研究で分析した遺伝子情報

Gene ID	Gene description	Accession number
SoPHYA	Spinacia oleracea phytochrome A	XM_021995200.1
SoPHYB	Spinacia oleracea phytochrome B-like	XM_022006854.1
Solhy	Spinacia oleracea late elongated hypocotyl	XM_021990279.1
SoPRR5	Spinacia oleracea two-component response regulator-like aprr3	XM_021990164.1
SoELF3	Spinacia oleracea early flowering 3	XM_021985848.1
SoTOC1	Spinacia oleracea timing of cab expression 1 (PRR1)	XM_022004963.1
SoVTC2	Spinacia oleracea GDP-L-galactose phosphorylase 1-like	XM_021995756
SoGLDH	Spinacia oleracea L-galactono-1,4-lactone dehydrogenase	XM_021982567.1
SoAPX	Spinacia oleracea L-ascorbate peroxidase 3	XM_021982989.1
So18S rRNA	Spinacia oleracea 18S ribosomal RNA	Spo14194

表2. リアルタイム PCR 用プライマー配列

Gene name	Forward primer (5'-3')	Reverse primer (5'-3')
SoPHYA	ACAACTCACCATAATCCAACACAC	CTGAAGTGAAGTTGATCAGTGAGAA
SoPHYB	GCTACAGATATACCTCAGGCGTC	AAGAGGCTGCTGTAGACGTTC
SolHY	CACCATCATCACCGTCTTCTTC	AACTAAGGAAGAATTGAGCGCAG
SoPRR5	CAAGAAGCCTCGGACCTCTG	TGTGCAGATTGAGGAGCAAGA
SoELF3	CAAGGATTGTTCATCGCGTGG	TCCAGCACTTGCATCGAGAA
SoTOC1	CTTGTGAAGCCATTGCGGAC	TATTCTTCTCCGCCAGGCCA
SoVTC2	TGCTTGCTCTCAACATGGCT	TGGAGGTGGTTGATGGTAGC
SoGLDH	GCAGGAGCTTGTAGAGCACA	GGACGGCTCCACCTTGATAC
SoAPX	CGATCTTCGCGCTCTCATCT	CGTCTTCGCGCAATAAGTCC
So18S rRNA	GATTCCGACGAACAACTGCG	AAGTAACATCCGCCGATCCC

3. 研究内容

3-1. アスコルビン酸含量

総アスコルビン酸含量の経時変化を図1に示した. 12L/12D 貯蔵において,貯蔵開始から24時間後に収穫 直後から約50%に減少した.一方同時刻において24D 貯蔵は,60%以上減少していた.

Fig. 1 Changes in ascorbic acid concentration during preharvest (cultivation) and post-harvest (storage) of spinach under 21 $^{\circ}$ C. 0 is the time of harvesting spinach samples, and (-) indicates period (h)before harvesting.

3-2. 相対遺伝子発現量

図 2-4 には栽培中 24 時間, 貯蔵中 48 時間の光受容体 遺伝子 (SoPHYA, SoPHYB), 時計遺伝子 (SoLHY, SoPRR5, SoPIF3, SoTOC1), アスコルビン酸代謝関 連遺伝子 (SoGLDH, SoVTC2, SoAPX) の相対遺伝子 発現量の経時変化を示した.

光受容体遺伝子の発現において, SoPHYA は栽培中 6:00から緩やかに減少し, 18:00に急増した. その後は 緩やかに増加した. 貯蔵中 12L/12D では緩やかな減少傾 向が見られた. 貯蔵中 24D では, 12L/12D と比較し発 現量が増加していた (図 2A). SoPHYB は栽培中横ばい であった. 12L/12D は暗期の間減少が確認できた. 24D では貯蔵開始直後から減少し横ばいになった (図 2B). SoPHYA は暗所で蓄積され, SoPHYB は光に合わせて増 減していることが分かった.

Fig. 2 Changes in expression level of photoreceptor-relating genes during pre-harvest (cultivation) and post-harvest (storage). 0 is the time of harvesting spinach samples, and (-) indicates period (h) before harvesting.

時計遺伝子発現において,朝方位相遺伝子 SoLHY は 栽培中,明期が始まる 6:00 にピークを迎え明期が終わ る 12 時間後に最も発現量が小さくなった.貯蔵中におい ては 12L/12D では,ピーク時における発現量の低下が 見られたものの同様の傾向を示した.24D では収穫直後 にピークを迎え経時的に減少した.貯蔵 12 時間後以降 は横ばいになった(図3A).昼方位相遺伝子 SoPRR5 は 栽培中,明期開始から4時間後である 10:00 にピークを 迎え,その 12 時間後に最も相対遺伝子発現量が減少し た.12L/12D,24D において共に栽培中と同様のリズム でピークを迎えた(図3B).ただし、24Dにおいては暗 期における発現量の減少は小さくなっていた.夕方位相 遺伝子 SoPIF3 は栽培中,暗期開始18:00に最も増加し た.12L/12Dでは貯蔵4時間後にピークとなり、その 12時間後まで減少した(図3C).24Dでは、収穫直後か ら貯蔵終了まで横ばいになっていた.SoTOC1 は栽培中 18:00 にピークを示し、それ以降減少した.12L/12D 貯 蔵中は4時間後から増加し以降横ばいになった.24Dで は、増加傾向が見られた(図3D).

Fig. 3 Changes in expression level of clock genes during preharvest (cultivation) and post-harvest (storage). 0 is the time of harvesting spinach samples, and (-) indicates period (h) before harvesting.

アスコルビン酸代謝関連遺伝子において、アスコルビ ン酸生合成遺伝子 SoVTC2 は、12L/12D では栽培中を 含め約 24 時間周期でピークが確認できた(図4A).24D では収穫 4 時間後に大きく発現量が減少し、その後は横 ばいになった.SoGLDHは、栽培中 18:00 に最大値を取 り、貯蔵中は 12L/12D では貯蔵 32 時間後と 48 時間後 に増加が確認できたが、24D では貯蔵中横ばいになった (図4B).また、アスコルビン酸を電子供与体として活性 酸素を消去する酵素をコードする SoAPX は栽培中、経時 的に増加が見られた.どちらの貯蔵区でも発現量は減少し、 12L/12D は貯蔵 12 時間後で、24D では貯蔵 4 時間後で 横ばいになった(図4C).

Fig. 4 Changes in expression level of ascorbic acid metabolism-relating genes during pre-harvest (cultivation) and post-harvest (storage). 0 is the time of harvesting spinach samples, and (-) indicates period (h) before harvesting.

3-3. 偏相関係数

各遺伝子間の偏相関係数を図5に表し、その結果をネットワークモデルにより図を示した(図6). ネットワーク

パターンが光存在下の栽培中および 12L/12D, 光が存在 しない 24D では大きく変化していた.アスコルビン酸生 合成で働く SoVTC2 は, 栽培期間および貯蔵期間で時計 遺伝子との相関がみられた.また光存在下の栽培中および 12L/12D では朝方位相遺伝子 SoLHY が共通して相関が あった. 栽培期間と貯蔵期間で比較したところ,後者で は SoLHY と SoPRR5 の強い相関がみられた.

4. 研究から得た結論・考察

アスコルビン酸量は,12L/12D 貯蔵区で多く,24D 貯 蔵区で小さくなっていた.アスコルビン酸含有量は,鮮度 の指標である.このことから,貯蔵中も光照射により減少 を抑制することで,鮮度が維持されていると考えられる. 過去の研究においても,収穫後明所で貯蔵したホウレンソ ウは暗所で貯蔵したものよりアスコルビン酸含量の減少が 抑制された^{17,18)}.本研究でも同様の結果が得られた.ま た Liu らによると 12L/12D は 24D よりクロロフィルを 保持できた¹³⁾.これらから貯蔵中の光処理は品質維持に 有効であることが示唆された.

Fig. 5 Partial correlation coefficient of relative gene expression in spinach during (A) cultivation (pre-harvest), (B) storage (post-harvest) under 12 h light/ 12 h dark condition, and (C) storage under 24 h constant dark condition.

Fig.6 Network model of gene expression relationship observed under different storage conditions based on the partial correlation coefficient of relative gene expression in spinach; (A) all genes, (B) between clock genes and VTC2, and (C) among clock genes.

偏相関係数から得られたネットワークモデルより,光が存在する栽培中と12L/12D,光が存在しない24Dの二つのグループではネットワークパターンが大きく変化していた.

アスコルビン酸の合成経路の律速段階で働く VTC2の 発現は光応答性を示すとの報告されている^{19, 20, 21, 22)}.し かしながら本研究において, SoVTC2 と光受容体はいず れの条件においても弱い相関であった.一方でモデル植物 のシロイヌナズナでは, VTC2 が光周期の開始時にピー クを示し概日リズムに対する応答性が示唆されている²⁰⁾.

本研究では、栽培中ではSoLHY、12L/12D 貯蔵区で はSoLHY、SoTOC1、24D 貯蔵区ではSoPRR5 に相 関がみられた.SoVTC2と強い相関を持つのはいずれ も時計遺伝子であり、概日時計の実体である時計遺伝子 がアスコルビン酸代謝を制御するという考えを支持する 結果になった.光存在下の栽培中、12L12D 貯蔵区では SoVTC2とSoLHYの相関が共通してみられることより、 時計遺伝子の中でもホウレンソウにおいては、SoLHYが アスコルビン酸量のコントロールに関与することが考えら れる.また栽培期間と貯蔵期間で比較した際、後者ではと もに時計遺伝子である SoLHY と SoPRR5 の相関が強く なっていた.この二つの遺伝子は乾燥ストレス応答を制御 している²³⁾.栽培期間で見られなかった相関が貯蔵期間 で見られるようになった理由として,収穫後は栽培時と異 なり根から自由に水分を得られないことが挙げられる.

本研究より貯蔵時において LHY および PRR5 がアスコ ルビン酸合成のコントロールに関与すると考えられる.た だし偏相関係数は因果関係を示すものではないため,詳し い経路を明らかにするにはさらなる研究が必要である.

5.残された問題、今後の課題

貯蔵中の光照射による,品質と概日リズムの変動,ま たそれらの関係を明らかにできれば,概日時計の制御を 原理とした新しい品質保持法の開発への利用が期待でき る.本研究では,貯蔵中の光照射により,SoLHYおよび SoPRR5が発現することによって品質が保持されると考 えられる.今後はさらなるメカニズム解明および革新的品 質保持技術の開発のため,異なる品目および貯蔵条件や他 の品質評価やその関連遺伝子の分析を行う必要がある.

6. 謝辞

本研究を遂行するにあたり,多大な研究助成を賜りました公益財団法人東洋食品研究所2020年度研究助成ならび に関係者の皆様に厚く御礼申し上げます.

7. 参考文献

- 水野猛;山條貴史:植物の概日時計と和時計 植物 に内在する時計のしくみ.日本農芸化学学会.2007, 55(3), p. 174-181.
- 藤原すみれ:高等植物の概日時計を支配する翻訳語制 御と転写制御機構. 生化学. 2013, 85(12), p. 1086-1090.
- 3 福田弘和:植物工場における概日時計の科学技術. 植物環境工学 (J.SHITA). 2018, **30**(1), p. 20-27.
- 4 中道範人;水野猛:植物の生物時計-時計関連遺伝子 と計時機構研究の新展開.化学と生物.2006,44(5), p.295-304.
- 5 大原隆之; 佐竹暁子: 植物の体内時計 柔軟な位相 調節と代謝・成長の最適化.日本物理学会誌.2017, **72**(12), p. 878-881.
- 6 Harmer, S. L.; The circadian system in higher plants. Annu. Rev. Plant Biol. 2009, 60, p. 357-377.
- 7 Haydon, M. J.; Bell, L. J.; Webb, A. A.: Interactions between plant circadian clocks and solute transport. *J. Exp.Bot.* 2011, **62**, p. 2333-2348.
- 8 Barak, S.; Tobin, E. M.; Andronis, C.; Sugano, S.; Green, R. M.: All in good time: the Arabidopsis circadian clock. *Trends Plant Sci.* 2000, **5**, p. 517-522.
- 9 Johansson, M.; Staiger, D.: Time to flower: interplay between photoperiod and the circadian clock. *J. Exp.Bot.* 2015, **66**, p. 719-730.
- 10 Harmer, S. L.; Hogenesch, J. B.; Strume, M.; Chang, H. S.; Han, B.; Zhu, T.: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. *Science*. 2000, **290**, p. 2120-2113.
- 11 福田弘和: 生物が刻む時間に迫る: 植物が刻むリズム を植物工場に生かす. JST news. 2018, **3**, p. 10-11.
- 12 Thiruvengadam, M.; Shih, C. F.; Yang, C. H.: Expression of an antisense *Brassica oleracea* GIGANTEA (BoGI) gene in transgenic broccoli causes delayed flowering, leaf senescence, and post-harvest yellowing retardation. *Plant Mol. Biol. Rep.* 2015, **33**, p. 1499-1509.

- 13 Liu, J. D.; Goodspeed, D.; Sheng, Z.: Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants. *BMC Plant Biol.* 2015, **15**(1), p. 1-9.
- 14 日坂弘行;小倉長雄:貯蔵中のホウレンソウ部位別の アスコルビン酸含量の変化.日食工誌.1991, 38(1), p.41-43.
- 15 Mazurek, A.; Pankiewicz, U: Changes of dehydroascorbic acid content in relation to total content of vitamin C in selected fruits and vegetables. *Acta Sci. Pol. Hortorum Cultus*. 2012, **11**(6), p. 169-177.
- 16 Livak, K. J.; Schmittgen, T. D.: Analysis of relative gene expression data using realtime quantitative PCR and the 2^{-ΔΔct} method. *Methods.* 2001, **15**, p. 402-408.
- 17 Toledo, M. E. A.; Ueda, Y.; Shirosaki, T.: Changes of ascorbic acid contents in various market forms of spinach (*Spinach oleracea* L.) during postharvest storage in light and dark conditions. *Sci. Rep. Grad. sch. Agric. & Biol. Sci., Osaka Pref. Univ.* 2003, **55**, p. 1-6.
- 18 Toledo, M. E. A.; Ueda, Y.; Imahori, Y.; Ayaki, M.: L-ascorbic acid metabolism in spinach (*Spinacia oleracea* L.) during postharvest storage in light and dark. *Postharvest Biol. Technol.* 2003, 28(1), p. 47-57.
- 19 石川孝博:植物のアスコルビン酸生合成研究の現状. ビタミン.2020,94 (8), p. 438-442.
- 20 Dowdle, J.; Ishikawa, T.; Gatzek, S.; Rolinski, S.; Smirnoff, N.: Two genes in *Arabidopsis thaliana* encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. *The Plant Journal*. 2007, **52**(4), p. 673-689.
- 21 Yabuta, Y.; Mieda, T.; Rapolu, M.; Nakamura, A.; Motoki, T.; Murata, T.; Yoshimura, K.; Ishikawa, T.; Shigeoka, S.: Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. *J. Exp. Bot.* 2007, **58**(10), p. 2661-2671.
- 22 Yoshimura, K.; Nakane, T.; Kume, S.; Shiomi, Y.; Maruta, T.; Ishikawa, T.; Shigeoka, S.: Transient expression analysis revealed the importance of *VTC2* expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. *Biosci. Biotechnol. Biochem.* 2014, **78**, p. 60-66.

23 Nakamichi, N.: The transcriptional network in the Arabidopsis circadian clock system. *Genes*. 2020, 11(11), p. 1284.