各種プラスチック・フィルムで包装された 果実野菜類の袋内ガス組成一【

オリーブ

松 井 悦 造・清 水 義 弘

Components of Gases in Plastic Pouches, Packaged with Fresh Fruits and Vegetables—I

Olives

Etsuzo Matsui and Yoshihiro Shimizu

- (1) When olives were preserved in polyethylene film of high permeability to gas and of low permeability to water vapor, N_2 , O_2 , and CO_2 were detected by gas chromatography in the pouches as the gas components. This was also with the case of polycarbonate.
- (2) When olives were packed in aluminium foil laminated films of almost no permeability to gas and to water vapor, O_2 in the pouch soon disappeared due to the respiration of the fruit, followed by the appearance of H_2 with CO_2 and N_2 . The same phenomenon were also observed with pouches of high gas barriers such as polyyinyl chloride, polyamide 6 and k-cellophane.
- (3) The occurrance of H₂ in the pouch is considered to be resulted from the action of some anaerobic bacteria introduced before packaging.

1. 緒 言

プラスチック・フィルムに果実を密封包装した研究例として次のものがある。

樽谷氏らりは通気性のあるプラスチツク・フィルムの袋に柿を密封して,長時間保存するための実験をした.柿は袋の中で呼吸して O_2 を吸収して CO_2 を出す.そしてフィルムはある程度の通気性があるから, CO_2 は袋の外へ出, O_2 は外から袋へ入る.袋内の $(N_2:O_2:CO_2)$ をある成分比に保つと,柿は呼吸を抑制されながら長期間の保存が可能になる.適当な通気性のフィルムを選ぶために,同氏は最初は(軟質)ポリ塩化ビニルを,次に厚さ0.02, 0.03, 0.06, 0.08mm の高圧法によるポリエチレン(すなわち低密度ポリエチレン)フィルムを使った.そして最後に厚さ0.06mmのポリエチレンがこの目的には最適であると結論した.

邨田氏ら?) はリンゴをポリエチレン・フィルムに密封して保存実験を行なった。またバナナの追 熟抑制のためには高圧法によるポリエチレンの厚さ 0.03mm が適当であるとした。 これらのガス分析はいずれも Orsat の方法で行なっている.

著者らは果実の保存が目的ではなく、各種のプラスチック・フィルムの 通気性、透湿性を測定し、これらのフィルムで作った袋にオリーブを入れ密封したとき、袋内の気体の成分比はどう変わるかを経時的に調べたので、ここに報告する。

2. 実験の部

2・1 使用したフィルム 実験に使った包装材料は6種類であって、その通気性および透湿性は Table 1 に示すような測定値であった。アルミニウム箔ラミネート・フィルムは通気性、透湿性と

Kind of films	Thickness	Perm	eablities	Permeabilitites to water vapor			
Kind of films	(mm)	Air	CO ₂	O ₂	H ₂	N ₂	(g/m²/day)
Polyethylene, low density	0.045	1,100	7,000	1,800	6,000	600	10
Polycabonate	0.050	350	3,000	800	_	150	80
Polgvinyl chloride	0.055	18	90	30	200	10	30
Polyamide-6	0.045	0.5	4	1	_	0,2	130
K-cellophane	0.043	3	2	1	_	3	30
Al-foil laminate	0.100	0	0	0	_	0	0

Table 1 The permeabilities of plastic films to gases and water vapor

もゼロの筈であり、実際の測定値も ゼロ であったので、他の フィルム と比較するときの対照とした。

一般にプラスチック・フィルムは、 N_2 の透過が最も少なく、 CO_2 の透過が最も多く、 O_2 の透過はその中間である。

2・2 実験方法 試験用の袋を作るには、同じフィルム 2 枚を合わせ、インパルス・シーラーで 三方をヒートシールし、その寸法をできるだけ正確にタテ、ヨコ 16.0×8.0cm とする。そして袋 の片面中央部付近に、タテ×ヨコ 1.5×1.5cm、厚さ 0.3cm のゴム板をエポキシ系接着剤で接着 する。ただしポリエチレン・フィルムだけは接着剤がきかないから、同じ寸法のポリエステル/ポリエチレンの 2 層ラミネート・フィルムをポリエチレン側で熱鏝で熱接着し、次にポリエステル側 でゴム板をエポキシ系接着剤で接着する。ゴム板をフィルムに接着しておくのは、実験に際し、このゴム板に注射針を通して、袋内の気体を採集するための工夫である。この方法で何回もガス採集を行なったが、ガスの漏れはなかった。

オリーブは当農場で樹になっている成熟した黒色の果実をもぎとって、各袋に 4 個ずつ詰め、袋内の空気の量を大差のないようにして(少差は止むを得ないが)、口をヒートシールした。時期は 2 月下旬であった。との実験では袋内の最初の空気量を測ることはできなかったが、 $N_2:O_2$ は 79: 21 と考える。

オリーブを詰めた各々の袋を室温($18\sim23^{\circ}$ C)で保存し、2 週間にわたり毎日 0.3mm ϕ の注射 針で約 0.4ml 採り、これをガスクロマトグラフィーで、 CO_2 、 O_2 、 N_2 を測定した。 1 回の実験に 2 袋を使った。

ガスクロマトグラフィーの測定条件は次の如くである.

カラム---0.3mシリカゲルと3mモレキュラーシーブ5Aとの2段

キャリヤーガス---アルゴン, 1.2kg/cm²

オーブン温度——70°C

レコーダー感度---8mV フルスケール

ブリツジ電流---50mA

3. 実験結果

3・1 ポリエチレンの袋 ポリエチレン・フィルムはガス透過性が大である。そしてガスの種類により透過速度が異なる。袋内のオリーブは呼吸して袋内の O。を消費したのち、フィルムを通して外から O。が少ないながらも絶えず供給されていて、また果実から放出した CO。は容易に袋外に出て行く、そしてガス総量は減じ続け、袋は収縮し、あたかも真空包装のような状態になった。

Storage time]	Polycarbonate pouches				Al-laminated pouches							
(days)	CO ₂	O ₂	H ₂	N ₂	CO ₂	O ₂	H ₂	N ₂	CO ₂	O ₂	H ₂	N ₂	
	96	%	%	%	96	%	%	%	%	%	%	%	
1	1.3	13.8	0	84.8	3.2	5.1	0	91.7	13.2	0	0	86.9	
2	1.0	15.0	0	84.0	2.1	6.0	0	91,9	21.3	0	0	78.7	
3	1.0	15.9	0	83.1	2.2	6.0	0	91,8	26.7	0	0	73.3	
4	1.0	16.0	0	83.0	2.2	6.1	0	91.7	29.8	0	0	70.2	
5	1.1	16.2	0	82.8	2.2	6.1	0	91.7	32.0	0	0	68.0	
6	1.1	16.3	0	82.6	2.2	6.2	0	91.6	34.2	0	0	63.1	
7	1.1	16.5	0	82.4	2,2	6,2	0	91.5	36.9	0	0	65.8	
8	1.1	16.6	0	82.2	2.2	6.2	0	91.6	39.8	0	0	63.1	
9	1.2	16.7	0	82.1	2.2	6.3	0	91.5	40.0	0	0	60.2	
10	1.2	16.8	0	82.0	2.2	6.4	0	91.4	40.2	0	0	60.0	
12	1.2	16.9	0	81.9	2.3	6.4	0	91.3	41.0	0	0	59.8	
14	1.2	17.0	0	81.8	2.3	6.5	0	91.2	41.7	0	0	58.3	
16	1.3	17.2	0	81.5	2.3	6.6	0	91.1	37.5	0	8.2	54.3	
23	1.1	17.9	0	81.0	2.1	6.5	0	91,4	20.3	0	44.3	35.4	
30	1.2	17.8	0	81.0	2.0	7.0	0	91.0	12.1	0	69.8	18.1	
Vol. of gas		decreased				decreased				inereased			
Pouch		much shrinked				little shrinked				much expanded			

Table 2 Components of gases in plastic pouches packed with olives (I)

そして $CO_2: O_2: N_2$ のガス組成は Table 2 にある如く、 おおよそ一定であった、この場合は弱いながらも O_2 ガスによる呼吸であろうと考えられる。

ポリエチレン・フィルムは透湿性が極めて小であるため、オリーブの水分は外へ蒸散することがほとんどなかった。(Fig 1 参照) そのため袋内のオリーブにカビがはえた。

	=			_	_		-			_			
Strage time	P.viny	P.vinylchloride pouches				P. amide-6 pouches				K-cellopane pouches			
(days)	CO ₂	O ₂	H ₂	N ₂	CO ₂	O ₂	H ₂	N ₂	CO ₂	O ₂	H ₂	N ₂	
	96	96	%	96	96	%	96	.96	96	96	%	%	
1	14.0	0.8	0	85.2	15.3	0	0	84.7	11.2	0	0	88.8	
2	16.2	0	0	83.8	20.0	0	0	80.0	15.1	0	0	84.9	
3	18.9	0	0	81.1	22.0	0	0	78.0	18.0	0	0	82.0	
4	20.1	0	0	79.9	23.8	0	0	76.2	20.0	0	0	79.8	
5	21.2	0	0	78.8	25,2	0	0	74.8	22.8	0	0	77.2	
6	22.0	0	0	78.0	27.0	0	0	73.0	25.0	0	0	75.0	
7	23.0	0	0	77.0	28.0	0	0	72.0	27.2	0	0	72.8	
8	24.0	0	0	76.0	28.8	0	0	71.2	28.9	0	0	71.1	
9	24.5	0	0	75.5	29.2	.0	0	70.8	29.6	0	0	70.4	
10	25.0	0	0	75,0	29.9	0	0	70.1	30,1	0	0	69.9	
12	25.0	0	0	75.0	30.0	0	0	70.0	31.5	0	0	68.5	
14	25.0	0	0	75.0	30.1	0	0	69.9	32.0	0	0	68.0	
16	24.6	0	2.6	73.0	27.4	0	3.5	69,1	32,5	0	2.4	65.1	
23			[22.6	0	17.5	59.9					
30										ļ			
Vol. of gas		increased				increased				increased			
Pouch	1	broke				broke				broke			

Table 3 Components of gases in plastic pouches packed with olive (II)

3・2 ポリカーボネートの袋 ポリカーボネートの通気性もやや大である。袋内のガス総量は少しずつ減じ、袋は収縮したが、袋内のガス組成CO₂、O₂、N₂は30日間を通じてほぼ一定比率であった。O₂も少量は絶えず存在していた。

ポリカーボネート・フィルムの透湿性は案外大きくて、ポリ塩化ビニルとポリアミド-6との中間であるが、事実オリーブの水分蒸散はかなりあった。

3・3 アルミニウム箔ラミネートの袋 アルミニウム箔をラミネートしたフィルムはガスの 透過がほとんどゼロであり、水蒸気の透過もほとんどゼロである。この袋の中ではオリーブの 呼吸により O₂ が消費され、CO₂ が発生する.

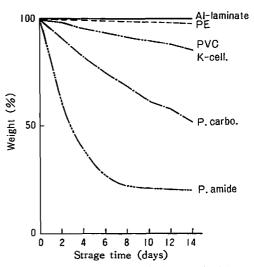


Fig 1 Weight changes of olives packed in plastic pouches.

密封後1日で全部の O_2 が無くなり、 CO_2 が現われた。 すなわち最初(CO_2 $0:O_2$ $21:N_2$ 79)のガス組成であったものが、密封後1日で(CO_2 $13.2:O_2$ $0:N_2$ 86.8)のガス組成に変り、第2日には〔 CO_2 $21.3:O_2$ $0:N_2$ 78.7〕となり、さらに時日の経過とともに CO_2 の発生が増加し続け、ガス総量も増加し、袋は膨脹し続けた。この場合は N_2 も CO_2 も袋の外へ逃げることはなく、

また O_2 が外から侵入することもない筈であるから、2 日以後は果実の嫌気的呼吸によって CO_2 が生じたのであろうと考えられる。

16日目から袋内で H_2 が発生し、ますます H_2 の量が増加した。30日経っても袋はガス膨張を続け脹り切っているが、まだ破れないでいた。この時のガス組成は O_2 はなく CO_2 と H_2 と N_2 とであって、 H_2 の量が甚だ多かった。袋内にはやや腐敗臭があった。

3・4 ポリ塩化ビニルの袋 硬質塩化ビニルのフィルムは通気性が中位である。第2日から O_2 がゼロになり、 CO_2 の蓄積が増し、袋内のガス総量が増加し、袋は膨脹した。袋内の O_2 が無くなった後のガス組成は、 CO_2 と N_2 、だけであったが、 H_2 が16日後に少量現われた。しかし23日目にガス膨脹のために袋はシール部から破れた。

ポリ塩化ビニルの透湿性は比較的小であるが、袋内のオリープの水分蒸散は小であった。

- 3:5 ポリアミド-6の袋 このフィルムは透湿性は大,通気性は小である。袋内のオリーブは水分が逃げて乾燥状態になった。袋内のガスは O_2 がすぐ無くなり,そののちは CO_2 と N_2 とであったが,16日目に H_2 が発生し,その後は $CO_2:H_2:N_2$ のガス組成であったが30日目に袋は破れた。
- 3・6 K-セロファンの袋 ポリ塩化ビニリデンを塗布したセロファンであって、通気性、透湿性とも小であり、ヒートシール性もある。 この袋では O_2 がすぐ無くなり、16日に H_2 が現われたが、23日で袋は膨脹して破れた。

4. 総括と考察

 $4\cdot 1$ ポリエチレン・フィルムは通気性大、透湿性小であって、この袋にオリーブを密封したとき、袋内のガスは N_2 と O_2 と CO_2 との3者がほぼ一定の割合で混っていて、オリーブは O_2 を吸って CO_2 を放出し、弱いながらも普通の呼吸をしていると思われた。また透湿性が小であるため、袋内の湿度が高く、カビが生えた。

ポリカーボネートの袋も通気性がやや大であって、袋内のガスはやはり N_2 , O_2 , CO_2 の 3 成分であった。

これらのフィルムをAグループとする。

 $4\cdot 2$ アルミニウム箔ラミネートのフィルムは通気性も透湿性もほとんどゼロであって、これの袋にオリープを密封包装すると、オリープの呼吸のため袋内の O_a は暫くのうちに無くなり、 CO_a が現われるが、その後は O_a なしの状態にもかかわらず CO_a が増え続ける。これは恐らくオリープの体組織の1 部が分解しつづけて CO_a が排出されるためであろうと考えられる。しかるにさらに長時間この状態で保存を続けると H_a が現われてきた。

これと同じ傾向のフィルムは、ポリ塩化ビニル、ポリアミド-6、K-セロファンである。袋の中に N_2 と CO_2 と H_2 とがあって、 O_2 がない。これをBグループとする。

4・3 オリーブを密封した袋内で保存していると O₂ がなくなり H₂ が発生した原因についてはまだ実験が完了していないので、ここでは保留したいのであるが、嫌気性菌のうちには H₂を産生

するものがあるので今後その存否を確めたいと思う.

文 献

- 1) 樽谷隆之, 真部正敏, 香川大学農学報, 8, 233 (1957); 樽谷隆之, 真部正敏, 園芸会誌, 29, 114 (1960); 樽谷隆之, 同誌, 29, 212 (1960); 樽谷隆之, 同誌, 30, 95 (1961)
- 2) 邨田卓夫, 蔡平里, 緒方邦安, 農加工技研会誌, 8, 138 (1961) 邨田卓夫, 古衡山, 緒方邦安, 日食工会誌, 12, 461 (1965)