飲料缶詰製造に伴って排出される産業廃棄物の有効利用

―コーヒーかす培地によるエリンギ栽培期間短縮 短期栽培に適する菌株の検索―

加瀬谷泰介, 岡崎 由朗, 宮川キミ枝, 末松 伸一

Effective Utilization of Waste Discharged from Canned Drinks Manufacturing Lines

—Shortening Cultivation Period of the Edible Mushroom *Pleurotus eryngii* by using the Spent Coffee Grounds Medium. Searching Strains Suitable for Short Cultivation time.—

Taisuke Kasetani, Yoshiro Okazaki, Kimie Miyagawa and Shinichi Suematsu

King Oyster mushrooms (*Pleurotus eryngii*) quickly produced fruit bodies on culture medium prepared from spent coffee grounds (SCG) from a canned coffee drink manufacturing line using mixed mushroom spawn of three commercial strains: KE-106 (Katsuragi Sangyo Co., Katsuragi-cho, Wakayama Pref., Japan), KX-EG038 (Kinokkusu Co., Sendai City, Miyagi Pref., Japan) and E-25 (Chikuma Kasei Co., Chikuma City, Nagano Pref., Japan). Strains KE-106 and KX-EG038 produced fruit bodies at about 30 days; E-25 was slightly delayed (about 40 days). The pilei of KE-106 and KX-EG038 developed with normal morphology. However, the pilei and gills of E-25 showed very poor growth, and the shape of fruit body was baton-like. Based on these results, strains KE-106 and KX-EG038 are suitable for use in the mixed spawning method we employed here in order to produce crops quickly. Cultivation of these two strains is a useful means for reducing waste generated in canned drinks manufacturing and cutting the costs of mushroom cultivation through the reuse of SCG.

Key words: waste, recycle, coffee, spent coffee grounds, edible mushroom, Pleurotus eryngii, shortening of cultivation period, mixed spawning.

缶コーヒーに代表される容器詰めコーヒー飲料の生産量は282万klと非常に多い¹¹. そのために膨大な量が排出されているコーヒー抽出かす(SCG: Spent Coffee Grounds)は水分が多いために、腐敗しやすく、輸送しにくい、このため、前処理として脱水・乾燥するが、処理費用の増大を招き、排出者の負担になっている。現在は多くが産業廃棄物として処分されているが、単なる処分ではなく、有効に利用することを求める「食品リサイクル法」の施行によって、新たな対応が求められている。

これまでに食用きのこの生産用培地材料としてSCGを有効に利用できることを報告してきたが2)~5, 近年生産・消費共に伸長しているエリンギについて,種菌を培地に混合接種することで,栽培期間を大幅に短縮できることがわかった6. 本報では,この方法に適する菌株を市販種菌の中から検索したので,報告する.

実験方法

- 1. 材料
- 1) 使用菌株

株式会社キノックス(宮城県),株式会社 千曲化成(長野県),株式会社 かつらぎ産業(和歌山県)の3社から,それぞれ1種類ずつ合計3種類のエリンギ(Pleurotus eryngii(DC: Fr.)Quél.)市販菌株を購入し、実験に供した (Table 1).

2) 栽培容器

ホクト産業株式会社(長野県長野市)のきのこ専用ポリプロピレン(PP)瓶(850-58)に、発泡ポリウレタンフィルタ内蔵の専用PP蓋を組み合わせて用いた。

この他に、殺菌と種菌接種の工程については、(財)福島県きのこ振興センター(福島県郡山市)のきのこ専用PP袋(NT-25, 2.5L容, 不織布フィルタ2個付き)を用いた.

3) 培地材料

株式会社ナガノトマト殿(長野県松本市)より提供されたコーヒーかす(NT-SCGと略す)を、きのこ栽培用培地の主材料として用いた。NT-SCGは排出された直後

の、水分を多量に含んだ状態のまま搬送したものを、脱水や乾燥処理をせずにプラスチック袋に密封し、冷凍庫で保管した。このSCGを使用時に自然解凍して用いた。

培地の副材料は米ぬかと脱脂大豆かすで、この他にpH調整用に炭酸カルシウムを添加した.処方を以下に示す(Table 2).

Table 1 Strains of Pleurotus eryngii

Strains	Characters (from Catalogue or web site)	Makers Kinokkusu Co. (Miyagi pref.)	
KX-EG038	Tough, elongate, pure white stipe with vein on basal end. Light beige, smooth and small pileus with well-inrolled margin. Decurrent gill. About 35 days to spawn run. Five to eight fruit bodies per culture bottle.		
E-25	Thick stipe, good taste, easy to cultivate and relatively short cultivation period.	Chikuma kasei Co. (Nagano pref.)	
KE-106	Tough, thick and long stipe, thick and well-inrolled pileus. 45 to 50 days to spawn run. Two to four fruit bodies per culture bottle.	Katsuragi sangyo Co (Wakayama pref.)	

Table 2 Recipe of SCG medium (Ratios in which SCG dry weight is 100)

Spent Coffee Grounds (dried)	100.0	Calcium carbonate	1.25
Rice bran	12.5	Water	150.0
Defatted soy bean flakes	12.5		

2. 方法

1) 培地調製・菌糸の接種

上記 (Table 2) の割合になるように培地材料をよく混合した後、2 kgずつを2.5L容量のフィルタ付きPP袋に充填した. 袋の口はヒートシールで密封した. 121℃-90分の条件でレトルト殺菌し、放冷後に、クリーンベンチ内で種菌をよく混合した. このように殺菌し、種菌を混合したSCG培地は、PP瓶に一律600gを充填し、軽く圧縮して中央に直径20mmの棒で竪穴(接種孔)をあけた.

種菌は(株)キノックス(KX-EG038),(株)千曲化成(チクマッシュ E-25),(株)かつらぎ産業(KE-106)の3種を用い、接種量は培地との重量比で1.5%とした。菌株ごとに10本の栽培瓶を用いた。

2) 菌糸の培養と子実体の誘導

栽培瓶は23℃,85%R.H.,暗黒の条件にした部屋に静置し、菌糸を培養した.培養期間は14日間とした.菌糸の蔓延後も、菌糸体が培地中の栄養素を分解・吸収する時間を与えるために、さらに培養を継続したためである.

菌床表面の気中菌糸と培地の一部を掻き取り(「ぶっ掻き」), 18℃, 90%R.H., 12時間周期の明期・暗期の条件にした部屋に静置し、子実体を誘導した。以上の期間を通して、菌糸が培地全体に蔓延するまで、子実体誘導処理から原基が視認されるまで、子実体を収穫するまでの日数を記録した。

3) 収穫と測定

子実体が生長し、十分に菌傘が展開しながらも、周縁部

がまだ内側に巻き込んでいる段階を目安として収穫した. 個々の子実体ごとに,石づきを切除した状態で秤量した (ばら採り). 栽培瓶ごとに,得られた子実体個数を計測し, 重量を合計して収穫量とした.極端に小さな子実体は,生 鮮品市場では基本的に商品として取り扱われないことか ら,15g以上の子実体のみを収穫物として,データをとっ た.

結果と考察

1. 菌糸の培養と子実体誘導

前報⁶⁾ と同じく、殺菌した培地と種菌を無菌的に混合、接種してから栽培瓶に充填、培養する方法で、菌糸蔓延までの初期培養期間を大幅に短縮することができた.本試験に用いた3菌株のうち、KE-106は他の2菌株と比較して菌糸培養期間がばらつき、長くなる傾向を示したが、有意差はなかった (Table 3).

蔓延までの菌糸生長にはほとんど差がなかった一方で、 子実体を誘導する菌掻き処理以降の生殖生長において、E-25が明らかな遅延を示した。子実体原基が形成されるま での期間、原基が収穫に適した子実体に生長するまでの期 間が明らかに他の2菌株よりも長く、ひいては接種から収 穫までの全栽培期間も平均で7日間長くなった。それらの いずれも、1.0%水準で有意差が検出された(Table 3).

2. 子実体の収穫量

子実体の収穫量においても、菌株間で差異が現れた (Table 4). ある程度市場性のある15g以上の子実体だけ を収穫した結果、栽培瓶(培地600g) あたりの初回収穫 量は $67.1\sim100.5g$,子実体個数は $2.1\sim2.8$ 個,子実体個体の平均重量は $33.9\sim39.1$ gとなった。一般的なおがくず栽培での収穫量と比較して、EG038およびE-25はやや少ないが、KE-106は良好な収穫量であるといえる.

収穫個数と平均個体重には有意差はないが、KE-106で やや大型で重い子実体が多めに形成される傾向があり、こ のことがKE-106で明らかに収穫量が多い原因であると考 えられる.

E-25を除いて30日で子実体を収穫しているが、さらに同一条件で培養を継続することで再度子実体が発生した。第2発生までの期間は約14日で、Table 4に示す第1発生の約半分、33.96~58.52gであった。接種から第2回収穫までの期間は平均43~47日であったが、これは通常の栽培の1回分程度である。

Table 3 Period of each process on cultivation of P. eryngii

	Spawn running 1 11	Spawn running 2 2)	Primordia forming ³⁾	Fruit bodies growing ()	Fructification ⁵⁾	Cultivation ⁶
KX-EG038	5.3 ± 0.48	8.7 ± 0.48	6.5 ± 0.53	9.5 ± 2.01	16.0 ± 2.00	30.0 ± 2.00
E-25	5.3 ± 0.48	8.7 ± 0.48	$*9.2 \pm 2.74$	$*13.8 \pm 4.47$	$*23.0 \pm 6.13$	$*37.0 \pm 6.13$
KE-106	6.1 ± 1.52	7.9 ± 1.52	6.3 ± 0.48	10.0 ± 1.63	16.3 ± 1.42	30.3 ± 1.42

¹⁾ Period of spawn running, from spawning to full grown in a bottle.

Table 4 Yields, number, weight of P. eryngii fruit bodies

	Yield(g) 1)	$Number^{2}$	Yield of ratio(%) 3)	Average weight (g) 4)	
KX-EG038	67.1 ± 17.07	2.1 ± 0.99	11.2 ± 2.85	36.7 ± 13.91	
E-25	68.8 ± 17.14	2.2 ± 0.79	11.5 ± 2.86	33.9 ± 9.73	
KE-106	$*100.5 \pm 18.60$	2.8 ± 0.79	$*16.7 \pm 3.10$	39.1 ± 14.09	

¹¹ Total weight of fruit bodies, which were 15g or more, from one PP bottle with 600g of SCG medium.

3. 子実体の形態

子実体の形態においては、菌糸生長や収穫量より明白な 差異が現れた。各菌株で特徴的な発生状況がよく現れてい る写真を以下に示す (Fig. 1).

菌傘はKX-EG038が最もよく、ついでKE-106がよく発達したが、E-25ではほとんど発達しなかった。E-25では 菌褶もほとんど形成されていないことから、胞子の形成不全によるものと考えられる。その原因は不明であるが、

E-25と供試したSCG培地との組み合わせに何らかの問題があると考えられる。通常用いられるおがくず培地などには含まれない、SCG培地に特有の成分に胞子形成が阻害を受けたのかもしれない。

またSCG培地ではおがくずなどの培地と比べて、原基数が極端に多くなる傾向が見られるが、3菌株中ではE-25で特に顕著であった。

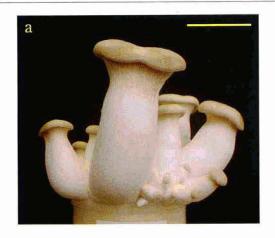
²⁾ Period after spawn running, from full grown to scraping off medium (total period from spawning to scraping was fixed in 14 days).

³⁾ Period of primordia forming, after scraping to which primordia were visible.

¹⁾ Period of growth of fruit body, after which primordia were visible to crop fruit bodies.

⁵⁾ Total period of fructification, after scraping to crop. 3) + 4).

⁶⁾ Total period of cultivation


^{*} Significantly different in 1.0% level by Least Significant Difference method.

²⁾ Number of fruit bodies, which were 15g or more, from one PP bottle with 600g of SCG medium.

³⁾ Ratio of yield to SCG medium, weight per weight.

⁴⁾ Average weight of each fruit body cropped from one bottle, but fruit bodies were selected which were 15g or more.

^{*} Significantly different in 1.0% level by Least Significant Difference method.

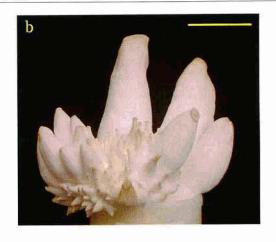


Fig. 1 Fruit bodies of three commercial strains (P. eryngii) on SCG medium in short cultivation with mixed-spawning.

- a: KX-EG038,
- b: E-25,
- c: KE-106. Bar is 5 cm.

要約

- 1. コーヒーかす (SCG) を主原料とした培地と, 無菌環境下での種菌の混合接種によって, 栽培期間を短縮する栽培方法で, エリンギの市販菌株3種 (KE-106, KX-EG038, E-25) から子実体を形成できた.
- 2. 下記の結果から、混合接種短期栽培法には(株)かつらぎ産業のKE-106が最も適していた.
- 3. KE-106, KX-EG038は約30日, E-25は40日弱で, 初回収穫ができた.
- 4. KE-106, KX-EG038の菌傘は十分に発達したが, E-25では胞子の形成不全により菌傘が発達せず,棒状 の子実体となった.
- 5. 収穫量は栽培容器 (培地600g) あたり67.1~100.5g, 15g以上の子実体個数は2.1~2.8個, その平均重量は33.9~39.1gであった.
- 6. SCG培地での栽培では、子実体原基数が非常に多くなる傾向があった。

謝辞

コーヒーかすを譲渡していただいた株式会社ナガノトマ ト殿には、ここに記して特に感謝いたします.

文 献

- 1)日刊経済通信社調査出版部編:酒類食品産業の生産・ 販売シェア=需給の動向と価格変動=平成11年版, p532,日刊経済通信社,東京,(1999)
- 2) 橋本一哉, 岡崎由朗, 加瀬谷 泰介, 宮川キミ枝, 山 崎昭子, 日置タツエ:東洋食品工業短期大学・東洋 食品研究所研究報告書, 22, 29-38, (1998)
- 3) 岡崎由朗,加瀬谷 泰介,宮川キミ枝,山崎昭子:東 洋食品工業短期大学·東洋食品研究所研究報告書,23, 21-28,(2000)
- 4)加瀬谷 泰介, 岡崎由朗, 宮川キミ枝, 山崎昭子: 東 洋食品工業短期大学·東洋食品研究所研究報告書, 23, 29-37, (2000)
- 5)加瀬谷 泰介, 岡崎由朗, 宮川キミ枝, 山崎昭子:東 洋食品工業短期大学·東洋食品研究所研究報告書, 24, 29-38, (2002)
- 6) 岡崎由朗,加瀬谷 泰介,宮川キミ枝,末松 伸一:東 洋食品工業短期大学·東洋食品研究所研究報告書,25, 19-23,(2004)